This is a very good essay by a writer I enjoy alot. His novel Anathem is one of my favorite books ever. It is the first novel I ever read where, as soon as I finished it, I turned back to the first page and started in again... He is worth listening to.
Found this one via Brad on Facebook. Thanks!
"I worry that our inability to match the achievements of the 1960s space program might be symptomatic of a general failure of our society to get big things done. My parents and grandparents witnessed the creation of the airplane, the automobile, nuclear energy, and the computer to name only a few. Scientists and engineers who came of age during the first half of the 20th century could look forward to building things that would solve age-old problems, transform the landscape, build the economy, and provide jobs for the burgeoning middle class that was the basis for our stable democracy.
...
The imperative to develop new technologies and implement them on a heroic scale no longer seems like the childish preoccupation of a few nerds with slide rules. It’s the only way for the human race to escape from its current predicaments. Too bad we’ve forgotten how to do it.
The imperative to develop new technologies and implement them on a heroic scale no longer seems like the childish preoccupation of a few nerds with slide rules. It’s the only way for the human race to escape from its current predicaments. Too bad we’ve forgotten how to do it.
...
“You’re the ones who’ve been slacking off!” proclaims Michael Crow, president of Arizona State University (and one of the other speakers at Future Tense). He refers, of course, to SF writers. The scientists and engineers, he seems to be saying, are ready and looking for things to do. Time for the SF writers to start pulling their weight and supplying big visions that make sense. Hence the Hieroglyph project, an effort to produce an anthology of new SF that will be in some ways a conscious throwback to the practical techno-optimism of the Golden Age.
...
China is frequently cited as a country now executing on Big Stuff, and there’s no doubt they are constructing dams, high-speed rail systems, and rockets at an extraordinary clip. But those are not fundamentally innovative. Their space program, like all other countries’ (including our own), is just parroting work that was done 50 years ago by the Soviets and the Americans. A truly innovative program would involve taking risks (and accepting failures) to pioneer some of the alternative space launch technologies that have been advanced by researchers all over the world during the decades dominated by rockets.
But to grasp just how far our current mindset is from being able to attempt innovation on such a scale, consider the fate of the space shuttle’s external tanks [ETs]. Dwarfing the vehicle itself, the ET was the largest and most prominent feature of the space shuttle as it stood on the pad. It remained attached to the shuttle—or perhaps it makes as much sense to say that the shuttle remained attached to it—long after the two strap-on boosters had fallen away. The ET and the shuttle remained connected all the way out of the atmosphere and into space. Only after the system had attained orbital velocity was the tank jettisoned and allowed to fall into the atmosphere, where it was destroyed on re-entry.
“You’re the ones who’ve been slacking off!” proclaims Michael Crow, president of Arizona State University (and one of the other speakers at Future Tense). He refers, of course, to SF writers. The scientists and engineers, he seems to be saying, are ready and looking for things to do. Time for the SF writers to start pulling their weight and supplying big visions that make sense. Hence the Hieroglyph project, an effort to produce an anthology of new SF that will be in some ways a conscious throwback to the practical techno-optimism of the Golden Age.
...
China is frequently cited as a country now executing on Big Stuff, and there’s no doubt they are constructing dams, high-speed rail systems, and rockets at an extraordinary clip. But those are not fundamentally innovative. Their space program, like all other countries’ (including our own), is just parroting work that was done 50 years ago by the Soviets and the Americans. A truly innovative program would involve taking risks (and accepting failures) to pioneer some of the alternative space launch technologies that have been advanced by researchers all over the world during the decades dominated by rockets.
...
But to grasp just how far our current mindset is from being able to attempt innovation on such a scale, consider the fate of the space shuttle’s external tanks [ETs]. Dwarfing the vehicle itself, the ET was the largest and most prominent feature of the space shuttle as it stood on the pad. It remained attached to the shuttle—or perhaps it makes as much sense to say that the shuttle remained attached to it—long after the two strap-on boosters had fallen away. The ET and the shuttle remained connected all the way out of the atmosphere and into space. Only after the system had attained orbital velocity was the tank jettisoned and allowed to fall into the atmosphere, where it was destroyed on re-entry.
At a modest marginal cost, the ETs could have been kept in orbit indefinitely. The mass of the ET at separation, including residual propellants, was about twice that of the largest possible Shuttle payload. Not destroying them would have roughly tripled the total mass launched into orbit by the Shuttle. ETs could have been connected to build units that would have humbled today’s International Space Station. The residual oxygen and hydrogen sloshing around in them could have been combined to generate electricity and produce tons of water, a commodity that is vastly expensive and desirable in space. But in spite of hard work and passionate advocacy by space experts who wished to see the tanks put to use, NASA—for reasons both technical and political—sent each of them to fiery destruction in the atmosphere. Viewed as a parable, it has much to tell us about the difficulties of innovating in other spheres.
...
Innovation can’t happen without accepting the risk that it might fail. The vast and radical innovations of the mid-20th century took place in a world that, in retrospect, looks insanely dangerous and unstable. Possible outcomes that the modern mind identifies as serious risks might not have been taken seriously—supposing they were noticed at all—by people habituated to the Depression, the World Wars, and the Cold War, in times when seat belts, antibiotics, and many vaccines did not exist. Competition between the Western democracies and the communist powers obliged the former to push their scientists and engineers to the limits of what they could imagine and supplied a sort of safety net in the event that their initial efforts did not pay off. A grizzled NASA veteran once told me that the Apollo moon landings were communism’s greatest achievement."
No comments:
Post a Comment